Solvent behaviour in flash-cooled protein crystals at cryogenic temperatures.
نویسندگان
چکیده
The solvent behaviour of flash-cooled protein crystals was studied in the range 100--180 K by X-ray diffraction. If the solvent is within large channels it crystallizes at 155 K, as identified by a sharp change in the increase of unit-cell volume upon temperature increase. In contrast, if a similar amount of solvent is confined to narrow channels and/or individual cavities it does not crystallize in the studied temperature range. It is concluded that the solvent in large channels behaves similarly to bulk water, whereas when confined to narrow channels it is mainly protein-associated. The analogy with the behaviour of pure bulk water provides circumstantial evidence that only solvent in large channels undergoes a glass transition in the 100--180 K temperature range. These studies reveal that flash-cooled protein crystals are arrested in a metastable state up to at least 155 K, thus providing an upper temperature limit for their storage and handling. The results are pertinent to the development of rational crystal annealing procedures and to the study of temperature-dependent radiation damage to proteins. Furthermore, they suggest an experimental paradigm for studying the correlation between solvent behaviour, protein dynamics and protein function.
منابع مشابه
Biomolecular cryocrystallography: structural changes during flash-cooling.
To minimize radiation damage, crystal structures of biological macromolecules are usually determined after rapid cooling to cryogenic temperatures, some 150-200 K below the normal physiological range. The biological relevance of such structures relies on the assumption that flash-cooling is sufficiently fast to kinetically trap the macromolecule and associated solvent in a room-temperature equi...
متن کاملMacromolecular cryocrystallography--methods for cooling and mounting protein crystals at cryogenic temperatures.
Cryocrystallography is routinely used in macromolecular crystallography laboratories. The main advantage of X-ray diffraction data collection near 100K is that crystals display much less radiation damage than seen at room temperature. Techniques and tools are described to facilitate cryoprotecting and flash-cooling crystals for data collection.
متن کاملPractical macromolecular cryocrystallography
Cryocrystallography is an indispensable technique that is routinely used for single-crystal X-ray diffraction data collection at temperatures near 100 K, where radiation damage is mitigated. Modern procedures and tools to cryoprotect and rapidly cool macromolecular crystals with a significant solvent fraction to below the glass-transition phase of water are reviewed. Reagents and methods to hel...
متن کاملLow-temperature water reconstruction in concanavalin A, with implications for controlled protein crystal annealing.
Flash-cooled crystals of the I222 form of concanavalin A undergo a sharp non-destructive non-reversible phase transition upon warming to between 160 and 165 K, characterized by an anomalous increase in unit-cell volume. The expansion is anisotropic and primarily affects the b and c axes. Three sets of 1.7 A X-ray diffraction data were collected from one crystal: immediately after flash-cooling ...
متن کاملFlash-cooling and annealing of protein crystals.
Flash-cooling and annealing of macromolecular crystals have been investigated using in situ X-ray imaging, diffraction-peak lineshape measurements and conventional crystallographic diffraction. The dominant mechanisms by which flash-cooling creates disorder are suggested and a fixed-temperature annealing protocol for reducing this disorder is demonstrated that should be more reliable and flexib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta crystallographica. Section D, Biological crystallography
دوره 57 Pt 4 شماره
صفحات -
تاریخ انتشار 2001